用二元函數(shù)求極值計算。
c = ( ab + b )/( a^2 + b^2 + 1 )
∂c/∂a = [ b( a^2 + b^2 + 1 ) - 2a( ab + b ) ]/( a^2 + b^2 + 1 )^2
= b( b^2 - a^2 - 2a + 1 )/( a^2 + b^2 + 1 )^2 = 0;
∵ b ≠ 0, ∴ b^2 - a^2 - 2a + 1 = 0;①
∂c/∂b = [ ( a + 1 )( a^2 + b^2 + 1 ) - 2b( ab + b ) ]/( a^2 + b^2 + 1 )^2
= ( a + 1 )( a^2 - b^2 + 1 )/( a^2 + b^2 + 1 )^2 = 0;
∵ a + 1 ≠ 0, ∴ a^2 - b^2 + 1 = 0,b^2 = a^2 + 1;
代入①,a^2 + 1 - a^2 - 2a + 1 = 0,a = 1;
b^2 = a^2 + 1 = 2,b = √2;
∂²c/∂a² = [ -( 2ab + 2b )( a^2 + b^2 + 1 )^2 - 4ab( a^2 + b^2 + 1 )( b^2 - a^2 - 2a + 1 ) ]/( a^2 + b^2 + 1 )^4
= [ -4√2 * 4^2 - 4√2 * 4 * 0 ]/4^4 = -1/8;
∂²c/∂b² = [ -2b( a + 1 )( a^2 + b^2 + 1 )^2 - 4b( a + 1 )( a^2 + b^2 + 1 )^2 ]/( a^2 + b^2 + 1 )^4
= [ -4√2 * 4^2 - 8√2 * 4^2 ]/4^4 = -3√2/4;
∂²c/∂ab = [ ( 3b^2 - a^2 - 2a + 1 )( a^2 + b^2 + 1 )^2 - 4b^2( a^2 + b^2 + 1 )( b^2 - a^2 - 2a + 1 ) ]/( a^2 + b^2 + 1 )^4
= [ 4 * 4^2 - 8 * 4 * 0 ]/4^4 = 1/4;
A = ∂²c/∂a² = -1/8 < 0;C = ∂²c/∂b² = -3√2/4 < 0;
B^2 - AC = 1/16 - 3√2/32 < 0;
故 a = 1,b = √2 是極大值點(diǎn);
( ab + b )/( a^2 + b^2 + 1 ) 最大值是 2√2/4 = √2/2 。